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ABSTRACT

This report discusses the research conducted by the research team

at the Georgia Institute of Technology in the area of nonserial dynamic

programming networks. The problems, approach and major results are

I summarized ir& Chapter 1, while the rest of the chapters discuss, in

detail, the algorithm developments, experiments with sample problems,

and algorithmic complexities. Each chapter contains detailed computer

I" flow charts for the algorithms developed. Chapter 6 employs an efficient

dimensionality reduction algorithm known as the imbedded state space

I method in conjunction with the one developed in this study to treat an

1i. otherwise intractable problem involving feedforward loop systems. These

algorithms are useful inputs to the development of dynamic programming

1 based strategies for the analysis of complex nonserial networks.
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Chapter 1

NONSERIAL DYNAMIC PROGRAMMING NETWORKS: THE PROBLEM, APPROACH, &ND MAJOR RESLTS

1.1 Introduction

Our overall interest is in the optimal analysis (and/or design" of large

3 scale systems. Generally, a large complex system is composed of several inter-

connected subsystems which individually may be simpler than the parent system.

.1 In nonserial systems, the structure of these interconnections creates further

complexity. Such complexities, for example, may be engendered by the presence

of combinations of various nonserial networks.

3A nonserial system, as defined by Beightler and Meier [1], is a system where

at least one subsystem in the system receives inputs from more than one sub-

* subsystem or sends outputs to more than one subsystem. It could also be described

m as a system where for at least one of the stages, the output is not the input to the

next; thus, there exists at least one n such that the output xn 0 x n_, the input

of the next stage. Nonserial systems are encountered in the study of chemical

processing systems, natural gas transmission pipelines, water resources systems,

energy, production-inventory systems, and various other systems. Practical examples

of these systems are further discussed by Esogbue and Marks [141. Thus, there exist

important reasons to study such systems.

To motivate our discussion, let us consider a general mathematical formulation

for the following nonserial system, which approximates our concept of a large

scale system.

1.2 A General Nonserial System: Some Motivations

For illustrative purposes, we introduce the following general complex nonserial

system which is an example of a complex network:

Dr31 ___
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57 5 3 M2x1

S 0x 67 M 6 6 x 34 lM3 Ml1

7x 46 74 x 14

m6

in m4

Figure 1.1: An Example of a Large Complex Network

In the foregoing, let

Y. be the vector of inputs to subsystem i, and

M., the corresponding vector of decision variables, m. E N..
1l 1 1

Further, let Z. be defined as the set of output variables to subsystem i, with

z. defined as z. C Z. and fi(Yi) Ni) as the objective function for subsystem i.1 1 1 1

In this representation, we may visualize

zi = ¢(Yi' Mi) as the set of interconnection relations for subsystem

i and (Yi. Mi ) r Sit where S. is the set of restrictions for subsystem i. Note the

generality of these definitions i.e., fi(.,.) and D (.,.) need not be familiar

functions.
As an example, consider subsystem 3:Y3 = {x2 3 ' x 13; Z3 

= {x35' x34). A

mathematical programming formulation for this nonserial system is the following:

7
max E f(Y i, Mi) ()i=l

S.t. z i  O(Yi' i) V zi E Z i I = 1, 2, ... , 7 (2)

(YI, Mi) E Si  i = 1, 2, ... , 7 (3)

Note that this complex system contains subsets of various classical nonserial

systems such as diverging branch, converging branch and feedback loop systems,
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and as such may be considered a generalized network. Its treatment is thus

3 nontrival.

When the objective function and the constraints are linear, the resulting

I mathematical programming problem can easily be solved via linear programming

methods. When the objective function and the constraints are convex functions

defined over a convex set, the mathematical programming problem becomes a convex

3 programming problem for which there are methods of solution. However when any of

the convexity assumptions are dropped, this mathematical programming problem

I becomes difficult to solve. Dynamic programming does n,,. depend upon the nature of

the objective function, constraints, or the construct of the domain of the feasible

region of search. It thus possesses some appeal for solving problems of this genre.

SDynamic programming has been used to optimize nonserial systems in various areas.

Wong and Larson [27I for instance, used dynamic programming in the design and opera-

tion of natural gas transmission pipelines with a diverging branch structure. Mitten

and Nemhauser [191 applied this method to a hypothetical chemical process which con-

tained a recycle feedback loop around a reactor. Beightler and Meier [2 1 considered

the application of dynamic programming to a river basin reservoir system with a

converging branch structure. Esogbue and Marks [15] studied several project

h scheduling and resource allocation problems of the CPM-Cost variety in which the

precedence relationships possess a nonserial structure. Some efficient dynamic

7 programming based procedures for network compression were advanced.

Obviously, more real life systems can be formulated as nonserial dynamic

programming problems. The limited invocation of the method for the analysis of

more complex structural systems is attributable, in the main, to the lack of a suffi-

th,
ciently "n order theory of nonserial systems and to the usual computational

problems that have plagued the application of dynamic programming. Methods for

allevLating the computational burden so frequently encountered can be found in

Vi
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another paper by Esogbue and Marks [14].

1.3 Previous Related Works

A number of contributors to the state of knowledge of nonserial dynamic

programming deserve mention. Wilde and Beightler [26] and Nemhauser [21] reviewed

[ the basic theory involved in the optimization of the four basic classes of nonserial

systems: 1) diverging branch systems, 2) converging branch systems, 3) feedforward

loop systems, and 4) feedback loop systems. More complicated nonserial systems,

however, cannot be studied unless the results for the previously mentioned four

systems can be applied to the problem. The example in Section 2, for instance,

3 cannot be optimized efficiently using the method of aonserial dynamic programming

contained in the the original works cited above. Simple modifications and exten-

3 sions of the theory are not helpful either.

One reason for the above quandry is simply that this system is not composed of

a simple combination of the above mentioned four classes of nonserial systems. We

are thus unable to determine the order in which the subsystems should be optimized,

so that the dynamic programming procedure can be performed efficiently.

Another important reason is that computational techniques capable of being

used to tackle the nonserial examples given in the literature do not exist. Further-i, more, the issues are not discussed anywhere. One is left to impute that traditional

computational problems inhibiting widespread use of dynamic programming become

exacerbated in the nonserial case.

Among the major contributors to the current literature of dyanmic programming

are Bertele and Brioschi [5, 6, 7, 8 ). However, their main concern is with the

optimization of a problem whose objective function has the following specialized form:

X X icT 1(4)I' t



~in which

X = ix In x2 , ...h xn  is a set of discrete variables, ai being the (5)

number of feasible values of the variable x .

T = 11, 2, ... , ti and Xi C X. (6)

In the above, the function F(X) is called the objective function and the functions

fi(X') are the components of the objective function. Before Bertele and Brioschi

can optimize this problem via dynamic programming, the order in which the compo-inents of the objective function are to be optimized by the dynamic programming

procedure has to be determined, so that the number of computations for the problem

i can be minimized. A series of algorithms using graph theory concepts to determine

this optimal order is then developed. While these contributions are important,

the limitations of the problem addressed and thus the algorithms are evident. The

other contributors to the computational aspects of nonserial dynamic programming

U. include Beightler, Johnson and Wilde [ 1], Parker [241, Parker and Crisp [25] and

Brown [ 9]. The superposition approach suggested by Beightler et al [I ] for

treating converging branch systems under the assumption of linear return and transi-

g" tion functions with additive compositor operator was extended to nonlinear con-

verging branch systems by Parker and Crisp [25]. An extension of some of these

-. concepts to feedforward and feedback loop systems was presented by Parker. In [9 1

Brown considers a different approach to the analysis of converging branch systems

under both deterministic and stochastic return and transition functions. The

Iprocedure considers the nonserial converging branch system as a serial system by
grouping the stages of the two branches together into new two dimensional stages.

In this case,the input and output state vectors, as well as the decision vectors,

Iare all two dimensional. The approach, although apparently demanding on the storage

jrequirement, has interesting features especially with regards to the analysis of

stochastic systems.

5 ;



I Because of our concern for complexity reduction, we have demonstrated in [15]

that an adroit combination of certain potent but hitherto isolated concepts and

techniques of large scale problem solving can lead to the solution, via nonserial

j dynamic programming, of certain interesting nonserial systems. Specifically,

efficient formulations for treating a three branch converging system, a system

with multipaths departing from a junction, and a complex converging-diverging-

converging system, were developed by an adroit synthesis of the pseudo stage

concept (Beightler and Meier [ 2]), Nemhauser and Ullman's method [23] and an

optimal elimination technique akin to Bertele and Brioschi [6 ]. This method proved

to be considerably more efficient than the solo application of any of the foregoing

or any currently avaiiable algorithm.

1.4 Research Objectives

The overall objective of this research is to extend the theory of nonserial

dynamic programming so that it can be applied to most nonserial systems. In [121,

-. we demonstrated that the following three factors hinder the solution of a problem

by dynamic programming: 1) the amount of high speed memory required for the

problem (space complexity), 2) the total number of calculations required (computa-

tional complexity), and 3) the amount of off-line memory required (space complexity).

With these criteria in mind we wish to develop an algorithm which, in addition, will

give an optimal order in which the subsystems in any nonserial system should be

toptimized.
This is based on the premise that the crucial issue in nonserial systems

research revolves around the set of questions: a) given a complex nonserial system,

how do we collapse it into a serial-like structure? b) in the branch compression

effort, what optimal order should be followed in order for the resultant dynamic

program to be efficient with regards to the usual issues in dynamic programming

~algorithm development? While Bertele and Brioschi have proposed an optimal com-

pression order for a highly specialized nonserial form, we are unaware of any

aloitmdveomnt hleBre..n...s.ihv.pooeda ptmlcon .
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successful attempts to generalize or develop a theory applicable to most, if not

all, nonserial forms. While we would like to move in this direction, we thought

that our initial efforts should be directed to the development of efficient

I algorithms for the treatment of the classical nonserial systems which link up,

on a higher level, to form a complex nonserial system. These algorithms would

be accompanied with detailed treatments of their algorithmic complexities. Such

3 analyses were particularly missing in previous works in the literature. They are,

however, considered absolutely necessary in the development of strategies for

3resolving complex nonserial network problems.

31.5 Research Plan and Results

The research consisted of the following six phases:

31.5.1) Phase I
A number of criteria for discussing efficiency exist. These are, in turn,

contingent on the choice of the objective function. In the first phase, we con-

3sidered these issues and determined a set of criteria for which we wished to develop
an algorithm. They were based upon the three principal factors which tend to hinder

3 the solution of a problem via dynamic programming as well as those in combinatorics.

Several criteria were examined first before focusing on the most appropriate set

or combinations. Structural characteristics (attributes) of a complex nonserial

system of the type depicted in Fig. l.lwerestudied leading to a grouping of complex

nonserial systems by attributes and by degree of complexity. For example, we

1developed a characterization of the complexity of a nonserial network in terms of

the following parameters: N, the number of nodes; M, the connectedness, and ordering

or arc orientation such as diverging, converging, feedforward, and feedback and

various combinations of each.

Using these parameters, the complexities may be described as follows:

7
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1) Large N and simple structure

2) Large N and complex combination of arc orientations such

as converging branch, diverging branch, feedforward and

feedback loops.

3) Small N and simple structure

4) Small N and complex structure

1.5.2) Phase 2

An algorithm was then developed for each of the criteria decided upon in

Phase 1. The algorithms were structured so that the order of optimization of the

subsystems of the classical nonserial systems was the best possible. We invoked

concepts from graph theory, signal flow graphs, and automata theory wherever possible

in the dynamic programming algorithm development.

Using the conventional DP algorithm, a computer code in FORTRAN V was developed

for both the diverging and converging branch systems. Next, detailed computer

algorithms for these systems were constructed. Using algorithm analysis, results

- were derived to describe the space and time complexities of these algorithms. For

example, if we let the discretization levels for the state and decision variables be

denoted by Ks and K respectively, and further let M be the number of stages in the

fl subbranch while N represents the number in the main serial system, then we obtain thea. following results:

a) For the Diverging Branca Syste ,ta. The maximum space requirement -(M+N-3)K 5 , and

The number of computations = (M 2 +N2 +N) (K D+1)KS + 4(M+N)+3KS + 9

b) For the Converging Branch System

The maximum space requirement - 2K + (MK + N+3)Ks, and

The number of computations - [(K +1) (M 2+N 2+M+N) + 4] K2 + 4)K+

D KS D +

4M + 4N -1

b8
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These derived results are important in many ways. For example, they may be used

to compare the computational and space complexities of classical nonserial networks

I under the following restrictions:

i) identical number of branches

I ii) identical number of nodes in subbranch as well as in the main serial

system, i.e. N = 2M

K iii) discretization levels for states and decisions are the same,

i.e. KD 
= KS..

The following comparisons are instructive:

3 a) Space complexity comparison:

Space for diverging branch structure = 3(M+I)K S

Space for converging branch structure = (M+2)K2 + (21+3)K

b) Computational complexity comparison:

Number of computations for diverging branch structure =

M(5M+3)K 2 + (SM 2 +R1+3)K + 8M + 9

Number of computations for converging branch structure =

M(5M+3)K 3+ (5M2 +3M=5)g2 + 4K + 12M - 1.
S

We sum up the comparisons as follows: (See Table 1.1)

t9
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Table 1.1: Comparison of Complexities of Diverging

and Converging Branch Systems

Complexity Complexity as Nature of
Structure Name a function of Complexity

Diverging branch Space Number of nodes Linear

in the branch

Converging branch Space Number of nodes Linear
in the branch

Diverging branch Space Discretization levels Linear

Converging branch Space Discretization levels Quadratic

Diverging branch Computational N-7ber of nodes Quadratic
in the branch

Converging branch Computational Number of nodes Quadratic
4- the branch

I Diverging branch Computational Discretization levels Quadratic

Converging branch Computational Discretization levels Cubic

We may thus conclude that both from space and computational complexity considera-

tions, the diverging branch system is less complex than the converging branch

one-a fact that is suggested by the problen structure. Detailed analysis

and results appear in the respective chapters.

1.5.3) Phase 3

High level computer programs in FORTAN V were written for both the diverging

branch and converging branch systems. Thase were exemplified via several test

problems. The systems were subjected to perturbations in both N and M and return

as well as transition functions. Their al;:rithmic complexities were experimentally

verified in each case. Refinements in the algorithms were executed by introducing

concepts such as branch compression and node elimination, especially for complex

multi-branch systems. Detailed computer rio: charts for each problem were con-

structed. W.e emphasize the utility of our approach. The algorithms admit input,

10



return, and transition data in terms of functions of the associated variables.

Storage problems were not encountered with this line of pursuit. For programs

involving data structures in the form of tables, see the report by Dr. N. Warsi.

1.5.4) Phase 4

In this phase, the exercises of phases 2 and 3 we-e extended to the more

complex systems namely the feedforward and feedback loop systems.

1.5.5) Phase 5

Because of our interest in efficiency of algorithms, we explored the possi-

3 bility of an adroit combination of algorithms to solve problems which might other-

wise defy solution via a solo application of an algorithm. Thus, we constructed a

3feedforward loop example in which the return functions and the constraints possess
a special structure. In particular, the problem had components which had the charac-

teristics of a multidimensional nonlinear knapsack problem. This problem, as

3posed, could not be solved without major modifications in our algorithm. It was,

however, successfully solved using a combination of our algorithm and the imbedded

state space dynamic programming routine.

1.5.6 Phase 6

Finally, we considered the following assertion which we developed in connection

with our study of nonserial networks of the CPM-Cost variety using the project cost

minimization criterion:

Whenevvr a network Z6 such that Sor each activity i and j,
* - with activity i pZecedlng activity j (i < j) the set o6

patizz p. and pJ containing actvties i and j Ae6pectively

i6 given by p. c p . 04 p - c p. -then we can aa46 et -that the

1Sunctionat equatton n (L) decomposes into a sequence o6 one

dimen~ionaL dynamic progaminig putbters.

This is a sufficient condition which we can prove rather easily. We attempted to

develop a condition that is both sufficient and necessary with the hope that an

algorithm useful in the analysis of more complex systems may result. However,

om l I,

F ............



because of time and other resource constraints, this line of pursuit was truncated

[ for the moment.

1.6 Report Outline

Having discussed the project background, purpose and major results in this

3 chapter, we dedicate the rest of the report to the development of the dynamic pro-

gramming analysis of the various classical nonserial systems. We begin with the

3 diverging branch system, the easiest of the systems to analyze. This is treated in

Chapter 2. The algorithm, flowcharts, sample problems and algorithmic analyses

are given. In Chapter 3, the converging branch system is treated. This chapter

3includes two algorithms - the original and a modified one for the purpose of

solving problems with complex functions. In Chapter 4, nonserial systems with

3feedforward loop structures are discussed. The loop system is very complex

since it involves a combination of the diverging and converging branch systems.

Chapter 5 considers the feedback loop nonserial problem. This is akin to the

feedforward in many ways. The report is concluded with Chapter 6. In this

chapter, a feedforward loop example was constructed involving return and transi-

3 tion functions that were different from any type considered previously. In

particular, the return functions were step functions and the resource availability

constraints were expressed in terms of constants. The imbedded state space algorithm

3was used in conjunction with our algorithm to solve this problem. The algorithmic

steps are provided but computer implementation was truncated because of budgetary and

time constraints on this project. It could be seen though that this is a beneficial

and necessary line of pursuit when structurally complex nonserial systems are

being investigated.

12
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Chapter 2

A! LYSIS OF DIVERGING BRANCH NONSERIAL NETWORKS

2.1 Development of a Dynamic Programming Algorithm for the Diverging Branch System

A diverging branch system (see Fig. 2.1) is the easiest of the elementary

nonserial structures to analyze. For simplicity, we first consider a two branch

system. The stage transformations and return functions both for a main serial

process and for a branch are defined as follows:

Xn tn(Xn' dn) , n = 1, 2 ... , N

Xm.ll = tm(Xl, din , m = 1, 2, ... M

and Y11 = tsl(Xs' dS)

rn  rn(x n, dn ) , n 1, 2, N

rml rm, (x, 1 ) , m = 1, 2, ... , M

dMl d 1

'X:l Ml M-1l" x 1 1  71 x 0

1 r l r

d d S d S1 41

X N XNS x5  S- 4 ~Sl 1 s2 ... 1 0oi1 0. L _ i O.,

SNr S  r s _ r I
N S r -1 r1

AFigure 2. DI: ADverging Branch System

13
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Consider the basic system consisting of one main serial system

(n 1 1, 2, ..., N) and one branch (M = 1, 2, ..., M). Let us assume that the

j input and decision variables at each stage have the following integer values:

Il <K , X < i, 2 , M
ii -iI1 < x < K 1 1, 2, . N

I < d < P , i = 1, 2, ... , M
1 < d ii i, 2, N

To develop our algorithm, we first decompose the network into four phases

I and then we employ the usual recursive procedures in optimizing the total return.

The recursion equations for the various phases are defined as follows:

1' 2.1.1) For the Diverging Branch (from stage 11 to stage Ml)

f 11l(x 11 max r11 (xll, d11 )

S< d <P
11- 11

mlml ) =max lml ml' dm) + f (t (x dM))]

ml - Pml
T where m f 2, 3, ... , M

Using the above equations, the optimal branch return and optimal decisions

f are computed for each possible value of xMl.

2.1.2) For the Main Serial Process (from stage 1 to stage S-1,
f(prior to junction node)

flX ) max r1 (xI, dI)

1 < di < P1

fn(Xn) = max [rn(xn, dn) + fnI(tn(Xn, dn))]

Sl<d 
<P

where n 1, 2, ..., S-i

The optimal return f n(X n)and optimal decision dn at each stage are saved

for each possible input value xn

2.1.3) For the Stage S (Junction)

fi S+ (x S max (r (xNO d ) + f5 1 (t S(x5, d ) + f1i (t Si(rS9 d ))M
1 < dS < PS

L14
!i.... . .. .. .. .
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At this stage, the optimal return f S+1(x S) is the combination of the

optimal return at stage S, rS(x S , d S ) the optimal return from the main serial

process preceding stage S, fS-l(ts(xs, dS1 ) and the optimal return from the

branch, fj141(ts 1 (XsS d). For each possible value Xs, f S+M(x s) and dS are reserved

at this stage.

2.1.4) For the Remaining Stages (from stage S + 1 to stage N, the terminal
node)

The optimal return at each remaining stage from S + 1 to N can be obtained

as in the usual serial systems, i.e.,

f N+M(N) = max [rN (xN, dN ) + fNI+MI(tN(XN, dN))I
1 < dN < PN

where m = S + 1, ... , N

2.1.5) Determination of the Optimal Decision and Return at Each Stage

At the final stage N, the optimal input to the system can be obtained by

f" letting

f (x) max {f (x )I
N+l N N+Ml N

With the optimal input x and optimal decision d obtained from a decision table,

- we can produce optimal stage return rN and optimal stage output XN I as follows:

r N = rN(xN, DN)

xN I = tN(Y., DN)

II This process continues from stage N down to stage S + 1.

" At junction stage (stage S), the optimal stage input xS and stage decision d , the

toptimal branch input are obtained via the transition equation

XMi - tsl (xS' d s"

For the remaining processes, the stage transformation, return function, and decision

tables can be used at each stzage.

S. .15



1 2.1.6) Input Data Required for the Algorithm

The input data for the algorithm are as follows:

1N = # of stages in the main serial process
M = #/ of stages in the branch
S = junction stage
K 1 =pper bound in the input value x m = 1,2,. , M

2.1.7) Output List of the Algorithm

Basically, the output of this algorithm consists of the following:

1. Return table at each stage for each input value.

2. Decision table at each stage for each input value.

3. optimal input, decision, and return at each stage.

In the next section, we present a companion flow chart for a computer program

to implement the basic algorithm whose steps were detailed above. In Section 2.3, a

simple problem is posed and solved. The situation involving a set of constraints

is next treated.

In Section 2.4, the diverging branch problem is analyzed in terms of the

* algorithm's sensitivity to a variation in N, the number of stages, the complexity

of branches, as well as the transition functions.

* 2.2 The Algorithm: Special Structure and Flowchart

The high level algorithm developed above and flowcharted in the sequel, although

akin to the conventional dynamic programming version, has some special structures

* worthy of note. A direct application of the usual approaches would dictate enormous

storage requirements when processing nonserial networks, thus making the processing

* of large networks virtually iwm.ossible. To mitigate this problem, we devise a

technique which enables us to indicate the optimal decision values at each stage by

aiappending K d = 1 + K to the state entry in the corresponding transaction table, where

L K =max (K Il, K 1 2, ... , KM1; K1, K 2, ... , %}. Although this adds one more state

variable and this stage, it enables us to eliminate the storage requirement for

[ 16



3' the optimal decision which is normally the case with classical algorithms.3' Any future reference to thstable entry is male asteentry MdK.When
needed later, the optimal decision values can be retrieved by searching only one3' row of the table for the entry value greater than or equal to Kd

The computer algorithms developed for the diverging branch system, as

well as for other systems in this report, are done in Fortran. They are based

on the analysis presented in the foregoing sections and flowcharted in Fig. 2.2.

The input data dictated by the dynamic programming constructs are in terms of

functions of the respective variables. This also mokes it possible to handle

larger problems without the forbidding storage limitations.

17



Fig. 2.2: Flow Chart of the Diverging Branch Algorithm

Read the input data

N = # of stages in a main serial process

M = # of stages in a diverging branch

S = the stage from which a branch diverges

Pml(Pn) = # of levels of the decision at stage ml(n)

Kml(k n ) = # of levels of the input at stage ml(n)

U'Define the transition and return functions
nml

n = 1, 2,..., N, m = 1, 2,..., I

oM
~Yes m = INo

fml (xml =max r ml(xm, d ml) f ml(xml) max [r.., (xml )+ f ml (t ml(xml d.1))]

1 d ml 5Pml 1 d ml Pml

No P Yes

m M +- m M,

18 A
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II A

Yes No

f n(x) n max r n(x n' dn )  f n (Xn) max[r n(x n, d n + f n-I(tn (x n d n)
1 5 nP n 1 5l d 5P

_I av lI xd 1 _ an

-In~+ { L . No

f n+Rl(x n) max [r n(x n' d n + f - tn('d n) + f i(t nl(rn, d n)

n' fn-ltn(_n__f__

n n

fn.+M1 (X n) max [r n(x n, dn ) + f n-l+M (t n(x n2 d n)

3''

dn Pn

] No Yes

~19



Decide optimal input x N such that

f (N+Ml(xN) max IfN+M (xN)

Find the optimal decision dN .

II IF
Compute the optimal stage input, decision and return at each
stage using the following transition and return functions:

x n tn ( l , l n= N-1,..., I

dn  n =N,..., 1
rn r n (xn' dn

xmI t sl (x s , d S) ,

Xml tm+l,l(Xm+,l, dm+(,x) m M-l,..., I

r,, r rml (Xml , d ml) m =M,..., I

Print Results

20
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1 2.3 Example (A Diverging Branch System)

Let us explicate the steps of this algorithm by considering an example.

3Suppose it is desired to maximize the sum of stage returns as a function of the input

x5 for the problem with the structure given in Fig. 2.3 and the data in Table 2.1.

X x21 X

U' Figure 2.3: A Diverging Branch System Example

U' Table 2.1: The Return and the Transformation Function in the System.

Stage Decision Return Transformation Constraints

1 d 1 r d1 2 d 1 [d i l

2 d2  r 2 xI  x2 +d2 x i xi1

3 d 3  r 3  d d32 x 2 
=  

3 + d 3 -

x21 = 3 + d3

11 d 11 r1l =d 11  dil E [dil, dil

21 d21  r21 'd1 1
2  X 1 x21 + d2 1  xi e [X il, Xil ]

4d 4  r d 2  3 4 +4
4  4 4 3 4 4

S5 d 5  r = d 52 x =  + x-
r5 55 x x 4 x 5

*di(di), x (x), d il( ), and x (x represent the lower bound (upper bound) of

each corresponding variable.

21



In this system, the stages 11 to 21 and 1 to 2 can be optimized using usual

recursive procedures as two disjoint serial systems.

At stage 11 and the diverging branch, we have

f(x) max d1

dlI

1' and the optimal decision is found to be

di 11 (x 11) =a111
Also, at stage 21, we see that

-2 2
with f21(x21 d 21 +d21

For stages 1 and 2 of the main serial process, the optimal decision and the

I value of f2 (x2) are given by

d I (x) d

i d2 (x2) d

2 -2
with f2(x2) 

2

Now, at stage 3 the two optimal returns f (x2) and f (x arecombined with the
21 21 22

stage 3 return as follows: 2 -+- -d2 -22)

f3 (x3) = max [d3  + (d + +-d21

d 3

We again observe that

d 3 (x 3 ) = 3 2. -2 .- -2 _2

with f (x) i + d2 + d3 + d + d
3 3 i 2 3 11 21

The optimization of the remaining stages, from stage 4 to 5, can also be

carried out recursively.

We finally have the following optimal return function at stage 5.

- 2 2 - 2
f5(x5) = d + dl

2i=l i=l

, '4IIi
2 t



The optimal solution can be summarized as follows (Table 2.2)

Table 2.2: Optimal Solution to the System Posed in the Example

Stage Optimal Input Optimal Decision Optimal Return

x1 1 = x2  1 id lr =d I
1,x2+d1d 1 1, 12

2 x 2  X 3 + d3  d 2 =d 2  r2 =d 2

3 x3  
=x4 + d4 d d3 r3  d32

S11 Xl x21+ d5 d 11  d11  rl =d 1 14-2

3 x21= 321 21 r21 212

-2
4 x4  x5 +d d4 =d r4 =d

4 5 5 4 4 4 4K -2

5 x5  d d5 r5  5d

We will now solve the diverging branch system defined in Table 2.2 and

Table 2.1 using the computer algorithm given in Section 2.2.

Some constraints on the input and the decision variables are added as

in the following problem.

5. 2
max Z r + Z r ml

n1 n m=1

S.t. 1 5 d 5 3 n 1, , 5

1 :5 dm 3 m 1 , 2

1 5 x ml 26 n =2, ... , 5n

1 5 x 5 20 m = 1, 2

23
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The return and decision tables at each stage for each input are

Ishown in the computer output attached (See Table 2.3). The optimal input,

decision, and return at each stage are also shown in the output.

2.4 Analysis of the Diverging Branch System

In Section 2.1, we had assumed that the input and decision variables at

I each stage had the following integer values:

I < xil ! Kil i, 2 , mIi

I l<xi<K i  1 1, 2, .,N

1 <dil P i= i , 2 , M

1 < d. < P. 1 1 , 2, .. ,N
~11172.

Let K = max (K11 ,..., KMI; KI, ... , K N)

Now, we will discuss the effects on the storage and the computer time

of our algorithm.

First, let us define the storage requirement of the diverging branch algorithm

3as a function of K, as follows:

0(K) = (M + N + 3) K

The above storage requirement can be easily verified from the algorithm [16]-

I
2.4.1) Sensitivity to N

Let us assume that the maximum value K remains unchanged with the increase of

S ,' the number of stages N, in the main serial process. The storage requirement

in this case increases by K with each additional increase in the number of N.

Moreover, the requirement 0(K) is approximately proportional to N if the number

of stages in a diverging br4nch, M is relatively small.

.J Table 2.4 shows the computational results of the example in Section 2.3

with the increasing number of stages.

24



I I. I
':1 I -

I ..-

i I -

I'
I' CI
'Cl a

to
r1
U
C)

0
C,

- C
(3
LI

Na C12C

'C0

F 0

aP. - -

.- C.)

F.
-- 

C' C' -

.0 -- . 4' 4...

7

..- ' -' .4.-

.,. ~

#9

I:
25 *

I

~ ~~T~~-77 7



31 Table 2.4: Computer Storage Requirements of the Diverging Branch Problem

Number of Stages Storage Requirement CPU Time
~1N 0(K) (Seconds)

5 200 .279'I10 300 .371
15 400 .480

As shown in the above table, both the storage requirement and the CPU time

seem to increase linearly with the increase of N.

f 2.4.2) Sensitivity to the Complexity of Branches

When the number of diverging branches increases, the storage requirement

f is not so simple as in the previous case. Consider a multi-diverging branch

system in Fig. 2.4 where the number of branches is D~ and each branch has

-Mi~i = 1, 2,..., D stages. Whenever a diverging branch is added, the branch need3

I storage both for the branch return and for the optimal decision at each stage of

the branch, hence, the storage requirement increases by (M.i + 1) K, i = 1, 2,..., D.

t Thus, the total storage requirement for the D different diverging branches can be

represented as follows:11 D
0(K)=(E (MH +1) +N +2) K.

i=l

2.4.3) Sensitivity to the Complexity of Transition Functions.

When the transition functions t n- t m, and t 51 can be represented as a simple

linear combination of stage input xn (or x ml) and decision d n(or d ml), the storage

requirement is not complex. However, if a system requires a transition function

which has nonlinear term of x or d , the storage problem becomes serious.n n

26
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I';Consider the example in Section 2.3 if the transition function is given by
It (nx~ d) x 2 + d for n = 1, 2, ... , 5.

then, K = max K1, I < i < 5 becomes a huge number in an unconstrained problem.

As a result, the computational time will be increased dramatically.

2.4.4) Sensitivity to the Complexity of Return Functions

Provided that we use a function of x and d for the return at each stage,

the complexity of return function does no t a ffec t the storage requirement of this

1algorithm. This is because the sto~age requirement is strictly a function of

- K, N and M.

I2



Chapter 3

ANALYSIS OF CONVERGING BRANCH NONSERIAL NETWORKS

3.1 Development of a DP Algorithm for the Converging Branch System

Let us direct our attention to the converse of the diverging branch system,

if namely a converging branch nonserial network. In its simplest form, a number of

parallel serial systems join together at a junction node and then feed theirI I outputs to a serial system. A simple example consisting of two input parallel

branches and one serial output is exhibited in Fig. 3.1.

For analysis and algorithm development, consider this structure as a main

I serial system n, = 1, 2, ... , N and a branch m, = 1, 2, ... , M. The convergence

occurs at node (stage) S. The transformation at this stage may be written as:

xs_ 1  = ts(x01, xS 5 d S

I- The transition function for the other stages may be represented as in the usual

serial processes as follows:

i" For the Branches

Xm-l, = t ml(x, ) , m 1, 2, M

I° Far the Main

xn_ 1  = t (x ,d) , n , 2, N
n n n.- n# S

We define the returns for each stage similarly. Thus,

r S = r S(x x , dS )

nr r(x, ) n =l, 2, ... , N, n# S
n n n n

r ml r ml (xml, dml , m=,2, ..., M

To develop the algorithm, we proceed as follows. We first decompose the system

into three components corresponding to stages 11, 21 to Ml, and I to N. For stages

1 to N, we separately consider stages I to S - 1, S, and finally S + 1 to N. To find

the optimal branch return f (<( ) we will use the b.ickward rtcursion. Next we will

29
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maximize fMl(x 01 over li" The recursion equations for the different phases

may then be defined as follows: (Section 3.1.1)

U dMl d1 1

I i 11MII l OIr 2 Ml rl1l. 1 11 0

ds+ d

- I

Figure 3.1l A Convergilg Brnh Sse1

Brnc System1dN d +1

3.1.1) For Sr i

We solve the problem

f11 (X11 , x01 ) = xr 1 1 (Xll, d1 1  )
1 d P

1 11  11

s.t. x0 1 =t 1 1 (xll, d11)

U In other words, for each input value xll we will find the optimal decision d

which satisfies x t1 l(x11 , dll) and also maximizes the stage return. For each

f value of (x1 l, x01 ), the optimal decision dl1 and optimal return rl are saved.

3.1.2) For Stages 21 to FTI

iThe optimal return is given by
f(x, xl) = max [r(x, d) + f (t (x d M))]
MIm 01 mi mI ml n-i, 1  ml mL' ml

1 f dml P ml

where m 2, ... , N.

30I



At each stage from 21 to Nl, the optimal decision d and optimal return

fMl are computed for each pair of (xml, x01). At stage Ml, fMl( xMl, x01) is

found and the value of X,~ which maximizes the branch return for each value

of X is obtained.

3.1.3) For the Main Serial Process

3.1.3-i) The optiaal return from stages 1 to S -ilcan be found by using-the

usual recursive procedure, i.e.,

f1 (x1 ) = max r 1(X, d )

1 < dI < P1

fn(x)= max [rn(x, d ) + f nl(tn(xn, d))]
n nn n

where n 2, 3,..., S -1

3.1.3-ii) At Stage S (the junction node)
The optimal branch return f~lX l x01) is combined with the

return at stage S and the optimal return from stagesl through S - 1 using the recursion
reurat The n bnhe rtr ~M~from 1i omiedwt
equation

+ fMl(xi , x~l)]

where the maximization is over 1 < x < k and 1 < dS < P In other words,

at junction S, we compute the optimal return fs (x s) and determine optimal branch

output x0 1 , and optimal decision d for each input value of x S We can also

obtain the optimal branch input x i1lwhich aximizes the branch return using the

value of x l.

3.1.3-iii) For Stage S + I to N

The recursion equation is given by

fN(x N) max [rCx., d ) + fNl(t,xN, dQ))

1 5 d 5

where n= S +l,..., N

31
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At the final stage N the optimal system return for each input value of x can

n

be obtained.

3.1.4) Determination of the Optimal Decision and Return at Each Stage

At the final stage, the optimal input xN can be obtained which maximizes

fN(x.) with the optimal decision dN obtained from the decision table. We willN N

proceed from stage N - 1 to stage S + 1. At stage S, the optimal input xS and

optimal branch input x01 are found as follows:

onXs = t S+lXiS+l i ds+)

Now that x S has been found the optimal branch input x 0 can be obtained. This is

because we decided optimal x01 for each value of x S when evaluating the optimal

objective function value at stage S. For the remaining stages the optimal stage

input and decision can be obtained using, the stage transformation function:

xN N+l(XN+ d N =,S - 1, S - 2, ... , 1

and the decision table, respectively.

3.1.5) Input Data Required for the Algorithm

The algorithm, akin to that developed for the diverging branch system, is

designed to receive the following input specifications in Fortran:

N = # of stages in the main serial process

M = of stages in the converging branch

S = junction stage

Kil = upperbound of the input value xil, i = 1, 2, ... ,M

Ki upperbound of the input value xi, i = 1, 2, ..., N

P upperbound of the decision value d i = , 2, ..., M

Pi "upperbound of the decision value dig 1, 2, ..., N

3.1.6) Output List of the Algorithm

At the completion of the operations, unless otherwise specified, the algoritht'

outputs the following:
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1. Return and decision table for each pair of (xi ml x0 m =1, 2, .. ,M

2. Optimalbranch input x 01and branch return for each value ofx *

3. eciiontable for main serial process.

4. Opimalbranch output x. I1 for each value of j unction input x S.

5. Optimal input, decision and return at each stage.

3.2 The Algorithm, Flowchart, and Structure

As is evident from the analysis of the foregoing section, the computational

schema for the converging branch system differs from that developed for the diverging

branch system. The flow chart for the converging branch system is given in Fig. 3.2.

Although there are similarities in the logic of the flow charts, major differences

occur in the optimization procedure as well as the difficulty of performing the

optimization.

Comparing Figs. 2.2 and 3.2, we notice that the first major difference arises

in section A where instead of storing the optimal return and decision at stage Ml,

a vector optimization involving two state variables x Iland x 01is performed in the

converging branch case. The differences surface again in the computation of

f n+1(x n). From then on, the charts follow basically the same procedure.

3.3 An Example Involving the Converging Branch Algorithm

Let us now demonstrate the use of the algorithm developed in section 3.1 in

the solution of a converging system problem. Suppose it is desired to find the

policy which maximizes the sum of the stage returns as a function of the inputs x5

and x 21 for the problem with the structure depicted in Fig. 3.3 using the data of

Table 3.1. In this problem, the serial component consists of stages 1 through 5

while the converging branch consists of 11 and 21 with convergence occurring at

node 3.
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Fig. 3.2: Flow Chart of the Converging Branch Algorithm,I

II Read the input data
N = # of stages in main serial process

I M = # of stages in a converging branch

S = stage to which a branch converges
Pml(Pn) = # of levels of the decision at stage ml(n)

K Ml(K) # of levels of the input at stage ml(n)

,Define the transition and return functions

• !t n ' rn ' for n 
= i 2, . ,N

I t, r, for m = ,2,..., M

I1 P
II

f f x, x) max [r(x, d)] fl(x x) max [rm(xl, d)

m m. 01 mlml, ml mlml 01 ml ml, dml)

11 l d 5Pml ml

Is.t. X0  t (x1 ,d I d 1 P +f 1 (t (x1  d1)~

m m ," + 1 m

34l
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Determine x., for each x~l such that

I fII (xMI x0 l) = max fMl(xMl' x0 l)
" iI -MI1

1 :

IYes >No

I < d 5< P 1 -  d 5P

II

n = n+

iifn+M(X) --max [rs x, d ) +f( ~lXln x=n 0 1 n fn-i' n(n'

1 1 <x dn n

i I n L =s " d n n n- 1 n

(x) max (r (x, d) + +M(t(X, d)

15-i d n n

,[
No N
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Determine the optimal input such that

1 *
fN+M (xN = fN+M(XN) }

1 !5<XN_<5KN

And find the optimal decision dN
i*

Compute the optimal input, decision and return
at each stage from N - 1 dovm to 1 and from
Ml down to 11 as follows:

x tn(x d)

n =  n

x Xs-i = t s(X s x 01, d S)

r * r rS(x 01, x S , d*S

x ml ( ml, dmlXm-l - (x Mi d

Print Results

.
T Stop

i.3

1L

i 36
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II 21 xl1 1x0
!!x 5  x

11 Figure 3.3: A Converging Branch System Example

Table 3.1: The Return and Transformation Function in the System

~1

Stage Decision Return Transformation Constraints

1 1 d = d12

d2 X x d d. c [di, di

2d d r l d+o X l + dlI

11 11i 11 01~ 11 11 ~ di il d
221 d 21 r 21 d d21 Xl 11 x 21 + d 21 d il c C di dill

4 d 4  r 4  d d42 x 3 = x4 + d 4 x iI C [Xill Xill

F5 d d55 d r5 =d x4 =x 5 +d

. *di' i y d and Xil represent the lowerbound of each variable and di, xi' dil'

and Xil represent the upperbound.
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II
We will first begin with the branch system and determine f2 1 (x2 1, x 0 1)

' At stage 11,

fl(Xllx x0) = maxd d2

11il01 11

Is.t. x 01 = Xll1 + (_ 11

Substituting the constraint into the recursion equation, we have

f sa 2, t ll(Xll, x01) = (x 01- Xl ) 2

At stage 2, the recursion equation is given by
] f~21(x21 ' x01 mxd2 +(01 -21 -21 ) 2

d 21

Since f21 (x2 1, x0 1 ) is a convex function of the decision variable d2 1, it is easy

to see that the optimal decision variable with the value of f21(x21' x01 is'' given by

ive n y d 21 (x 21, x 01 ) = d 2 1

d (x x0) = 2d2 + 2(x - x d + (x - x 2

Now, the main serial system through stage 2 is optimized in the usual

: way to obtain f2 (x2). At stage 1, we have

f 1l(x1) = max d1

and the optimal decision is given by

d (x I) = a V

By proceeding as at stage 1, we have

I d 2 (x 2 ) =2

f2 (x2) d1 -2 + 22

Ii At stage 3, the branch return is combined with the serial return from

stage 1 to stage 2 using the recursion equation
f ( a[d32 +(a12 +_d2) +_ (

f32(x, x2 1) ax d3  1  + 2d 21  2(x21 - x 0 1 ) d 2 1
+3±21 3)

+ O x 2]
%21 01

where the maximization is taken over x01 and d
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" The optimal value of x is found to be

xo1(x 39 x21 = 01

with d3 (x3 P x21) =d 3

and f (x x = + d 2 + d + 2d2  + 2(x - xo)d +
NJ3+21 '3' 21 2 -2 -2 21 21 012

i( 21- o0)2

Having combined the branch optimally with the main serial systems we accomplish

the analysis of stage 4 and 5 with the standard backward recursion. Then we

finally have

d (x5) d

5 5- 2 - 2

f5+21(xEX 2 1 ) 2 +2d 2  + 2 - ) + (x - 2
5-21 21 =l i 221 21 01 2 21 x01

5' Retracing our analysis, we find the remainder of the optimal solution, which

is summarized in Table 3.2 as follows:

Table 3.2: Optimal Solution to the System

Optimal Optimal Optimal
Stage Input Decision Return

1, x x + x21+ d2 3 + j4 + d5 + j11 + d21 d1 I r 1 1 2

2 x2  x + x + + d4 + d +d +d d 2 r =d2
2 5 21 3 4 5 11 21 2 2 2 2

-2t. +iXl 2 + l l l l

21 x 21 d21 d21 r d21

-221 f x +dd d r =
4 x4  5 3 d4  r4 4

5 x5  
d d r d2

5.5...5
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Let us now solve the converging branch system defined in Fig. 3.3 and Table 3.1

using the computer algorithm given in Section 3.2. We will add some constraints

on the variables as in the following problem:

5 2
max Z r + E m l

s.t. 1 !5 d -< 3 n 1, 2,..., 5

1 !5 dml - 3 m 1, 2

1 !5 x < 30 n = 4n

1 -lx x 5 5

1 < x 1 < 10 m = 0, 1, 2

The computational results are shown in the computer output of Table 3.3. The last

table shows the optimal decision and return at each stage.

3.4 Analysis of the Converging Branch System

Different from the diverging branch system the storage requirement of the

converging branch system depends not only on the value K but on K and K
01 S*

these are defined as follows

K max (K11 , K21 ,..., KMl. K1 ,..., KN)

1 <5 X l 01 : K01

and 1 5 xS  KS

The storage requirement for the process of main serial is (N + 2)K, (N x K)for

the decision value and(2 x K)for the stage return as discussed in the diverging

branch system. See Section 2.4.
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However, the storage problem for the converging branch is a little

I complicated. It can be analyzed as in the follo-wing cases.

1. At each stage (11, 21,..., Ml) for each pair of input

Ito the stage arnd the branch output (x01) we deter-
mine the decision value which optimizes the branch
return. Hence, the algorithm needs 2 X K X K 01
storage for computing the total branch return for
each pair of branch input x,,, and branch output x0l.

Another M X K X K 01storage isrqiefoth

decision value at each stage. Therefore, it becomes
(M +2) X K XK 01'

2. Storage requirements for the decision of optimum
branch input and branch return for each value of
branch output x 0 becomes 2 X K01r

3. At junction stage S, we need to determine the optimal
value of the input from the converging branch forineach possible value of the input from stage S +1 to S.
This requirement becomes Ks

3From the above analysis, the total storage requirement of the converging branch

algorithm can be represented as a function of K. K0 a id K as follows:
02 S

O(K, K olK ) (N + 2) K + (M + 2) X K X K 01+ 2K 01+ K

3If we assume the levels of the state variables x iand xSto be equal to K, then

the above expression becomes

20 0(K) = (M +2) K + (N + 5) K

Next, we will discuss the effects of storage, and time for the following

cases.

3 3.4.1) Sensitivity to N

As shown in the function 0(K), the storage requirement increases by K

as we increase one stage of the main serial process. This is the same as in

the diverging branch system.

43



I However, notice that the storage requirement in the converging branch

is highly affected by the number of stages in the branch. This is because

each additional increase of M requires a storage of the order K.

if The computational results with increasing number of N in the example

in Section 3.3 are suvin.arized in the following table:

Table 3.4: Computational Experience with the Converging Branch System

UNumber of Stages Storage Requirements CPU Time
N 0(K) (Seconds)

35 1440 .496
10 1590 .695
15 1740 .841

3.4.2) Sensitivity to the Complexity of Branches

3 As discussed before, the storage requirement in a converging branch

system is highly affected by the number of stages in a converging branch.

3 Moreover, if the number of branches increases, the problem becomes really

3 serious.

Consider the multi-converging branch system shown in Fig. 3.4, where the

3k number of converging branches is D and each branch has M., i -1, 2,..., D stages in

it. When a converging branch is added, the branch needs storage of the order of

Ik (Mi + 2)K 2+ 3K as analyzed before.

3 Hence, the storage requirement for the above multi-converging branch
D2

system can be 0(K) =(E M. + 2)K 2+ (N+ 2+ 3D)K.

3.4.3) Sensitivity to the Complexity of Transition Yinctions

As we have discussed in the diverging branch system, the complexity of

transition function affects the levels of discretization of the input state

at each stage. Hence, it directly affects the maximum number K on which the

* 44
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Figure 3. , : A Multi-Converging Branch System.
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storage requirements mainly depends.

3.4.4) Sensitivity to the Complexity of Return Functions

Again, the return function has no impact on the storage requirement and

3 computational time providing the algorithm employs a function in representing

the input vaz-iables x n and decision dn

3.5 A Modified Converging Branch Algorithm

3The algorithm develuped in Section 3.1 and used to solve the sample problem

in Section 3.3 is somewhat restricted in the classes of problems it solves. To

3 use it in solving problems involving complex functions, especially with regards to

the transition and return functions, a modification was necessary. This led to the

development of the modified algorithm. Let us then illustrate the use of the modi-

3 fied converging branch algorithm with the following example problem. Suppose it

is desired to find the policy which minimizes the sun of the stage returns as a

3 function of the inputs xand x21 for the vroblem with the structure given in

Fig. 3.5 using the data given in Table 3.5. First notice the presence of fractional

numbers in the return functions for each stage. Since there are no stages after the

3 converging stage in the main serial system, we begin with the two stage branch system,

and determine f 21 (X2 1 ' x 01). At stage 11

fn (x min 0.2 d2
f1 1 1 ill 01  11

01 11

46)
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3 d3  r3  0.1 (50-cd) x2  x3 + d

47



Substituting the constraint into the recursion equation,we havea f11 (x11, x0 1) = 0.2 (x1  - x01) 2

At stage 21, we see that

f 2 1 (x 2 1 , x 0 1  = min {375 - 10d21 + 0.2 (x21 + d21 - x0 1 )
d 21

Differentiating the term in brackets with respect to d21 and setting the

derivative to zero yields

m d21(x21, x01) 25 + x01 - 21

a and f 2 1 (x21 , x01 ) = 250 - lOx01 + lox 21

Now, at stage 1 the optimal branch return is absorbed. Thus,

4" fl+21 (x1, x21) min 0.1 d1  + 250 - lOx + lox21

x 01, d1I

- s.t. dI 
= XI + x0

Substituting the constraint into the foregoing recursion equation, we obtain

1 1+21 (Xl x21 min 0.1(x I + x01
) 2 + 250 - 01 + lox21

x0 1

t The optimal value of x01 is readily found to be

x01 (xl, x21) = 50 -x

with dI(xI, x21) = 50

and fl+2 (Xlx 2 1) 10(x + x2 1)

At stage 2, we have

f2+21 (x x2 1 ) 2 min (600 - lOOx 2 + d2 + 10(x2 + d2 + X21

2

The optimal value of d2 in the above recursion equation is independent of the

stage inputs x and x. So,if we assume the feasible region of d as

inus2 ad21'

d 2 c [d2' d 2 ]

48- _ _
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I

then, we have the optimal value of d2 as

d2 =d 2

and f2+21(x2, x2 1 ) = 600 + lld 2  90x 2 + lOx21

I Finally at stage 3, the recursion equation becomes

f3+21 (x3 , x2 1) min [0.1 (50 - d3 )2 + 600 + lld 2- 90 (x3 + d3)

d3  + lox 2 1 ]

It is easy to see that d = 500 is the solution with

f 3+21 (x x1) = 24150 + d 2 - 90x3 + lox21"

3Retracing our analysis, we find the remainder of the optimal solution

which is summarized as follows:I
Table 3.6: Optimal Solution to the System of Fig. 3.5 and Table 3.5

I

Stage Optimal Input Optimal Decision Optimal Return

I x, =x 3 + 500 + d2 dl 50 250

xOl x 3 - 300 - 2 -

11 x 11  x3 - 425 = 2 dll =25 125

21 x21 d21 3 - x21 - 425 -d 2  lox 3+ lox 21 
+ 4625 + lOd2

2 x2  3 + 500 d2  d2 -10Ox3 = 49400 - d2

3 x3 d 3 500 20250

Let us next solve the same problem described in Table 3.5 with the following

N constraints added to the input and decision variables at each stage

3 2
min E r + E r

n-i m- 4
9 .t. 4915 xI : 510

491 :5 x2 s 510
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0 :5x 3 55

* 3

-464 5 x 0 445

-439 x 1 -420

0 x 21 : 5

41 !5 d 1 60

0 O5 d 2 S5
11 - d3 : 30

3 :s d 1 30

-439 d21 -420

xn , Xml, dn ' dml c T, n 1, 2, 3
m11, 2

where T is the set of constraints in Table 3.5. Notice that this is akin to theU
problem solved earlier in that the objective function is similar. However, the

3 stage return functions are different. The solution is effected using a modifi-

cation of the algorithm developed earlier. The computational result is shown

3 with the computr output in Table 3.7. Note also that from Table 3.5, the total

optimal return of the system in Fig. 3.5 becomes

lox 1 - 9)0x 3 + lld2 - 23150.

With the constraints given in the above problem, the optimal solution is obtained

when

x 2 1  0, x 3 5, andd 2 = 0.

Further, note that in the computer output the problem was solved by changing

the minimization of the objective function to the maximization of the total return.

The computational efficiency of our converging branch algorithm is measured

with the problem by changing the number of discretizations of the variables.

The problem above was solved with six discretizations in the variables

x2 1, x3 and d2 and 20 discretizations for all other variables.

(
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Table 3.7: Computer Output of Constrained Example Problem

.. ... ... ... .. ... .... ...... .... .... ....... ...

.. ............ .... ...
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Table 3.8 shows the storage requirement and the computational time for

different combinations of discretizations. We see that the computational storage

requirement is clearly affected by the number of discretizations of the branch

output variable x01 as well as the other variables.

Table 3.8 Comoutational Storage Requirement and CPU Time for the Converging

Branch System

Number of Number of discretizations of x
discretizations 01

of all others 5 10 15 20

20 5,712 (.709) 10,322 (.989) 14,932 (1,313) 19,542 (1.674)

30 5,852 (1.077) 10,562 (1.834) 14,292 (2.484) 19,982 (3.219)

40 5,992 (1,729) 10,802 (2.913) 15,612 (4.077) 20,422 (5.201)

Numbers in the represent the CPU times (seconds)

* The storage requirement is measured with the number of elements in the arrays.

actually used.

1 3.6 Computational Efficiency of the Converging Branch Algorithm

3 The computer program of the converging branch algorithm is modified so that

any integer values are permitted for input and decision variables at each stage in the

3 system.

Assuming that the input (xi , xi) and decision variables (di, di1 ) at each stage

have their lower and upper bounds such that

S<x <u i =1 , 2..., N

d, <d, < ud i  1 1, 2, N

i - Xil 1 Uil = 1, 2, ... , M

h dil < dil < udil 1, 2, ... ,M

01 < X01 <u 0 1

then the computational storage requirement can be analyzed as follows:

.. 52



The main storage requirement in the converging branch algorithm is for the

decision tables and the return tables. Since the decision table for the main

serial process is constructed at each stage, the computational storage depends

only on the number of discretizations of each decision variables. Hence, the decision

table for the main serial process has the following storage requirement:

(Number of stages in the main serial process) multiplyed by (maximum

number of discretizations of the input variables in the main serial

process) = N X max (ui - Z. + 1)

I 1< i <N

The amount needed for the branch system is a little complex. Since at each

I stage of the branch, the transformation function has to satisfy the constraint

given by the branch output (i.e, ZOl !- Xol U0 ) the storage requirement for the

decision table becomes

Number of stages in the branch) multiplyed by Maximum number of

discretizations of the input in the branch) multiplied by Number

1 of discretizations of x01) = M X max (u 1 - l + I) X (u0 1 -Z..l + 1)

1 < i < M

Another major source of storage requirement is due to the return table. Since

3the system is solved using a backward recursion equation, we need to revise the
return at each stage with respect to the return at the previous stage. Hence, the

I ,storage requirement for the return table at the main serial process becomes

2 X {[maxu.] - [minL + 1)
1 i <Nl<i<N I<i<N

Similarly, the computational storage of the return table for the branch system

is given by

2 X {[maxUi - (min l+ III X (u - + 1)
il 01 01

i •
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Notice that the storage requirement of the return tables are largely dependent

on the size of the input variables each of which is a function of the decision

variable and input at the previous stage.

To illustrate the computational requirement of the converging branch system,

we solved a set of problems with different numbers of stages both in the main

serial process and in the branch. Table 3.9 shows the storage requirement and

computational time for each case. In each case, a set of simple transformations

and return functions at each stage was generated. Five discretizations for the

branch output variable x and ten for other variables were used. The lower-

bounds of all decision variables were assumed to be zero, and a reasonable

lowerbound for each input variable was given.

We can see that the storage anu the CPU time increase are very sensitive to

the number of stages in the branch system.

Table 3.9: Storage Requirement and CPU Times for Different Number of Stages

N Number of stages M~ = Number of Stages in the Branch
in the serial process 2 3 4

5 470 (.411) 620 (.442) 770 (.566)

10 620 (.448) 770 (.499) 920 (.582)

15 770 (.474) 920 (.525) 1070 (.605)

*Numbers in ()represent the CPU times in seconds.
*The storage requirement is measured with the number of elements in the arrays.
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Chapter 4

ANALYSIS OF FEEDFORI,'ARD LOOP SYSTEMS

4.1 The Basic Structure

A feedforward loop system is akin to the diverging branch system in

which the branch output feeds into the main serial subsystem at state j.

Thus, it may be viewed as a simple combination of diverging and converging

systems. The divergence occurs at stage k while the convergence takes place

at node j, j < k. The basic structure is diagrammed in Fig. 4.1.

Let the transformations and returns which are the same as in the usual

serial ones for all stages other than j and k be defined as follows:

xn- = t (x , d )

r = r (x , d ) , n =1,..., N, n 0 jfl n n n

xj I = t(X01, x, d.)

r. = r m(x0 1 , M.9 d )IJ 3 x2, 3

r m= rmlx(xm, din) , m 1, ... ,M

SxLl = tkl((X k dk)

!x

INX m EIj+~Ll I" 0
ml~

L Figure 4.1: A Feedforward Loop System

i- -- 5



Clearly, this is a more difficult system to treat than any of the

systems discussed so far. A fundamental observation which supports this

viewpoint is the fact that the branch is both diverging and converging.

Thus, in nature the branch input x,,, as well as the output x 1affects

the return from the serial system. As a consequenceof this important

fact, if the branch is optimized separately as a serial system, its

o~ptimal return must be determined as a function of both its input and out-

put. In effect, we have a two point boundary value problem. There are

thus at least two possible routes to the computational scheme. The optimal

branch return can be absorbed into the main serial system either at the

converging stage j or the diverging stage k. In either case, it must be

noted that a two state variable dynamic programming problem results for

the branch optimization. To minimize the computational burden, adroit

schema must be sought to reduce the vector optimization problems to that

of a series of one variable optimization problems.

4.2 The Optimization Procedure

Here, we will give a procedure which solves the feedforward loop

system in which the absorption of the branch occurs at stage k. Nemhauser [221

describes both approaches but indicates why the absorption at the diverging

stage is the preferred procedure. In this procedure, there are essentially

two main steps involving the loop system and the main serial system.

4.2.1) Optimization of the Loop System '(from stage 11 to Ml)

The branch consisting of stages 11 through Ml is optimized to find

f !MINI x01)* This procedure is the same as the one in the converging

branch system treated earlier. Notice that this is a two state variable

dynamic program.
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4.2.2) Optimization of the Main Serial System

The following five phases in the procedure may be considered.

4.2.2-i) For the stages from 1 to j - I (from node 1 to node preceding
the convergent node j)

The optimal return from stage I through j - I is obtained

by using the usual recursive procedure, i.e.,

f 1(x) max r (x , d )

f n(xn) max [r n(xn, dn) + f n-(tn(Xn, dn))], n = 2,..., j-1
d
n

4.2.2-ii) For stages from i to k - 1 (from convergent node to node
proceeding divergent node k)

Since the absorption of the loop is assumed to occur at

stage k, the optimization of x01 is deferred to stage k.

Hence, x01 is carried as a state variable in stages j

through k - 1. Let the optimal return be defined as

f fj(x j, x 01)

The resultant recursive equations are

f j(x, x 01) = m j [r (x, x01 , dj) + fj-l(t(xj, x0 1, dM))]

and f(, 'x 0 ) = max [rn(xn, dn) + fnl(tn(Xn' dn) , x01)]
l! dn

n = -F1, ... ,

4.2.2-ii1) Optimization of x01 at stage k (absorption of divergent node)

At stage k, the optimal loop return fMl(xN1, x0 l) is absorbed

into the main serial process and we have the following

recursion equation:

f+(x) max rk(xk, d ) + f (t(x, dk), x)

k+xl k d k k-l kk$k 01Sx1d
k  + f Ml(tkl(x k ' d k) x01)
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At this stage, the optimal branch output x01(Xk is

obtained as a function of the input variable xk of the

stage k.

4.2.2-iv) For the stages from k + I through N (remainder of the serial

system)

The recursion equation for stages k + 1 through N is given

as usual by

f (x)=max [r(X d)+ f (tX d

nn

This concludes the optimization phases f or the situation in which

absorption takes place at the divergent node. When it takes place at the

convergent node j, a different set of recursion equations is needed. In

general, the same number of computations is required in either case, TheI main difference in the procedure results from the consideration of wherex

is optimized. In the convergent node absorption variety, the optimization is

done earlier in the analysis with XMl being carried as a state variable from

stages j +1I to k - 1 whereas x 1is carried as a state variable during

similar periods when the optimization is done at the divergent node k as

I just described.
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Figure 4.2: Flow Chart for the Feedforward LoopSystem

Start

Read the input data

N =I of stages in the main serial process
M = # of stages in the loop

thCovrigstg ftelo
athe iverging stage of the loop

K n(K m = discretization # of input at stage n(ml)

P n(P ml= discretization # of decision at stage n(ml)

BK n(BK Ml) = lower bound of input at state n(ml)

BP nCBP ml) = lower bound of decision at stage n(ml)

Define the transition and return functions

for n =1, 2, ... , N and rn 1, 2,. , M

f l x X01) mxrm xm d ml fml(x m, x) max [r ml(x MI d ml + f -'

mm d ml dml'
tX01 t ml(X 1 9 d ml (t ml(x mld ml x 0 1)
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2

n+l

f (x x mrax rr(x ,d)+-f (t (x d),x

No
n k

Yes

n = n + 1.

I'Determine the optimal system input *such thait
XNN

And find the optimal decision d N

Go Tk
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3

Compute the optimal input, decision, and return
at eAch stage from N - 1 down to I and from MI
down to 11 as follows:

x t n+1 (xn+, d n )
X t (+i'd), n= N- ,...,, n j-1

* * d*
r n r (xn, d ) n = N - i,...,l, n # jn n In

x i_1  = tj (x 01 x. d.)

r= rj(xo01 x , d

XMl tkl(x k"d k

Xm M t m+l,l (m+l,l, dm+l, I ) , m M 0

rm, rml (xMl, dml), M,..., 1

Print Output

Sto
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4.3 An Example of the Feedforward Loop System

The flow chart for the numerical solution of the feedforward loop

system is shown in Figure 4.2. To illustrate the algorithm, a computer

program was written and implemented using the test problem described in

Figure 4.3. In the example, it is desired to maximize the sum of the

stage returns for the problem with the structure given in Figure 4.3 using

the data in Table 4.1. In this example, the convergent stage is node 2 and

the divergent stage is node 5. The loop contains nodes 31, 21, and 11.

x x

Figure 4.3: A Feedforward Loop System Example

Table 4.1: The Return and Transition Function for the System of Fig. 4.3

Stage Decision Return Transition Constraints

1 dI  rI =x 1 + d 1

2 d2  r2  x 01 + x2 + d2  (x 0 + x2)/2 + d2
S2 0( x xi+ 1 5) /-I ,

11 d 1 rl1 = X 1+ dl1 Xll + d1 0 x 5 15, 4...
2

21 41 r21 x2 1 + d 21 x21 + d21 0 5 xil 1 0, J-0, 1, 2, 3
2

31 d31 r31 - 31+ d 31 X3 1 + d3 1  0 x5  3

3 d r3  x3 + d x3 + d 0 d 2, i5,...,5
33 3 3 3 1

4 dx4 r4 - 4 + d4  x4 + d4  0 S d il 2, i-i, 2, 3

5 d 5  r5 
= x5 + d5  x5 + d5
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Our problem can be formulated using the following mathematical form:

5 2

max E r + E r
n= n m= ml

s.t. 0 ! x < 15 n = 1, ..., 4

0 <-x5  3

0 :S x 10 m = 0, 1, ..., 3

0 <:ldn  2 n 12, ..., 5n

0 ! d < 2 m = 1, 2, 3

The computational results are shown in the computer output of

Table 4.2 The optimal decision and return at each stage are summarized in

Table 4.3.
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Table 4.2: Computer Output of Feedforward Loop Example
in Figure 4.3

DECISION TABLE AT STAGE 11

0.~*I 1. 21.*

0. 1 1 . 2*4*****4******* ********* **** ** 4,

O,~ 1. 2 . 2. A"* 2. 2. 2 2 , . . 2. 2

*2***** 0. 1. 2*. 2.*2. 2424*2 2.42 2*. 2, 2.
.************ 0. 1. 2.*** ***2**2.**. 2.* *.2** * *

****************O. 1 1. 2
******.************** 0. 21. 2 2.* 2.** 2.*2.*
********* 2. 2********4c***4** 0. 1 . 2, 2.***** .* 2.*2*** .
*****4*****************,******** 0, 1, 2. 2***** 2** 2*** .
*. . . .2.*.**************** 09 12 2. 2t. ***2*
***************2 ***. ****, 02. 0 1 2 1*4 2.

EIO 2.TABLE AT STAGE 21

0. 1. 2, 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
2. 0. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2, 2. 2. 2.
2. 2. 0 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

0 1 22. . 2, 2. 2 0. 2. 2. 2. 2. 2. 2 2. 2. 2

2. 2. 2. 2. 0. 1. 2. 2. 2, 2. 2. 2. 2. 2, 2.
2. 2. 2. 2. 2. 0. 11 2. 2. 2. 2. 2. 2. 2. 2.
2,2. 2. 2 2. 2 0. 1. 2, 2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2. 2. 0. 1. 2. 2. 2. 2. 2. 2.

S 2. 2. 2. 2. 2. 2. 2. 2. 0. 1 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 1. 0. 1. 2. 2.
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 2.

DECISION TABLE AT STAGE 31

0. 1. 2 2. 2. 2. 2. 2 2. 2. . 2. 2. 2. 2 . 2.

2. 0. 1. 2. 2. 2. 2., 2. 2, 2. 2. 2. 2. 2. 2.
2. 2. 0. 1. 2. , 2. 2. 2 2. 2. 2. 2, 2.,2
2. 2. 2. 0. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 0. 11 2. 2. 2. 2. 2. 2. 2. 2. 2.

J 2. 2. 2. 2. 2. 0. 1. 2. 2. 2. 2. 2. 2. 2. 2.f 2. 2. 2. 2. 2., 2. 0. 1. 2. 2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2. 2, 0. 1. 2. 2. 2. 2. 2. 2.t 2. 2. 2. 2. 2. 2. 2. 2. 0. 1. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2. 2. 2. 2. 0. i. 1. 1.* 2. 2.

2. 2. 2. 2t 2. 2. 2. 2, 2. 2. 0. 0. 0.* 2. 2.
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I
j Table 4.2 Continued

I
IDLECISION TABLE FOR MIAIN SERIAL PROCESSO

2. 2. 2, 2. 2. 2. 2. 2. 2. 2. 2. 2 , 2 , 2

2. 2. 2. 2o 2. 2, 2, 2. 2. 2. 2.
I 2. 2. 2. 2s 2. 2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2, 2. 2. 2. 2, 2. 2.
2, 2, 2. 2. 2, 2, 2. 2. 2. 2. 2,,
2. 2. 2. 2. 2. 2. 2. 2. 2* 2. 26

2, 2. 2. 2, 2, 2. 2. 2o 2, 2. 2.
2, 2. 2. 2. 2. 2. 2. 2. 2, 2. 2*2. 2. 2. 2. 2 2. 2. 2. 2.
2. 2. 2. 2- 2. 2* 2, 2. 2. 2 2.
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

.2. 2. 2 . 2, 2. 2. 2 . 2. 2, 2, 2.

S 2 2. 2. 2. 2. 2. 2. 2. 2. 2o 2.
2. 2. 2 2 2, 2. 2, 2. 2. 2. 2.

2. 2. 26 2, 2. 2. 2. 2. 2. 1. 0.
2 2 . 2. 2. 2, 2. 2. 2. 2, 1. 0.

IT . 2. 2, 2. 2. 2. 2. 26 2, 1. 0.
2. 2. 2, 2, 2. 2. 2, 2. 2. 1, 0.
2.2. 2 2, 2. 2. 2. 2. 2. 1. 0.
2. 2. 2. 2. 2. 2- 2.' 2. 2. 1. 0.2. 2, 2. 2. 2o 2. 2, 2, 2, 1. 0.
2, 2. 2. 2. 2. 2. 2, 2. 2. 1. O.2. 2, 2. 2. 2 . 2. 2 . 2 . 24 1. 0.
2: 2. 2. 2. 2. 2. 2. 2. 2. 2. ,
2. 2. 2. 2. 2. 2. 2. 2o. 2. 1. 0.
2. 2. 2, 2, 2. 2. 2. 2. . 1. O.

2. 2, 2. 2. 2. 2, 2. 2, 2, 11 00
2. 2,, 2. 2 , 2. 2. 2. 2 , 2. 1 6 0.
2, 2. 2, 2. 2, 2, 2. 2. 2. 0. .

. 2, 2. 2. 2, 2. 2. 2. 2, 0. .
2 6 2 . 2 , 2 . 2 . 2 , 2 s 2 , 2 o 1. O ,
2. 2* 2, 2o 2, 2, 2. 2- 2. 10 0.

i 2, 2. 2o 2. 2. 26 2. 2, 2. 1. 6O
2 . 2 . 2 , 2 . 2 , 2 , 2 , 2 , 2 , I.,O
2. 2. 2, 2* 2. 2* 2. 2. 2. i. O.-2. 2, 2, 2, 2, 2, 24 2s 2. to 0

2. 2 . 2 . 2 , 2 o 2 , 2 , 2 , 2 . 1 1 O 12. 2 . 2 . 2., 2. 2, 2. 2. 2. 1. .

2 . 2, 2, 2. 2, 2, 2, 2. 2. 1o Of.2. 2. 2. 2. 2. 2. 2. 2. 2. 1. 0.
2. 2. 2. 2. 2. 2. 2. 2. 2. 1. 04
2. 2. 2. 2, 2, 2. 2o 2. 2. 1. 0.2. 2. 2. 2. 2, 22 2. s 1. 0.

2, 2. 2. 2. 2. 2. 2. 2. 2. 1. 0
J68
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Table 4.2 Continued

I

I 2. 2. : :
0. 0. 0. 0.
O. 0. 0. 0.

6. . 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0 . 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
O. u. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0,

6 OPTIMAL LOOP OUTPUT FOR EACH !NPLIT VAThLJE"

'OF THE DIVERGING STAGE N'
- 0 8

2 10
3 I

I "STAGE INPUT DECIS RETUPN'

"5 3 2 5.

4 5 2 7.
3 7 2 9.
2 9 2 22,
1 12 2 14.

31 5 2 9.
21 7 2 11,

12

11 9 2 13

TOTA-L OPTIMArL RETURi' IS 90.)
EOI , 0 FILES. 1 RECS, 6797 R'OD G

1 6
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Table 4.3.: Optimal Input, Decision, and Return of the System in Fiaure 4.3

Stage Opt. Input Opt. Decision Opt. Return

5 3 2 5

4 5 2 7

3 7 2 9

31 5 2 9

21 7 2 11

11 9 2 13

2 9 (i)* 2 22

1 12 2 14

* C ) represents the input from the feedforward loop

- 4 4.4 Analysis of the Feedforward Loop System

The storage requirement of the feedforward loop system can be

characterized by considering the following two aspects:

1. The storage requirement for the loop system can be analyzed as

the converging branch system.

I 2. The storage requirement for the main serial system is much higher

than that for the diverging or converging branch system. This

is because x01 is carried as a state variable for stages j through

k- 1.

Now, let Ui, k, Uii and Iil be defined as follows:

Li x Ux 1 1, 2, ... , N

Z :i x 5 U 1 0, 1, M...,

Also, let Ki and K be respectively the number of discretization levels

for variables x i and x and K and K be defined as follows:
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K = max K
l~iN
1 : i !5N

K1  max K

0 : i N

Since the loop optimization must be treated as an initial-final value

problem as in the converging branch system, the storage requirement for the

loop system becomes

SRL = K01 + 2 K01 (maxU - min 9Zi)
1~lK + i ii

The first term 1IK01 of the above equation is the storage requirement for

the decision value for each pair of input and branch output values. The

second term is the storage requirement for the stage returns for each

possible pair of input variable xil and branch output x01.

Now, the analysis of the main serial system of the loop structure is

different from the one for the converging branch system. In the converging

branch system, the branch return is combined at the converging stage S with

the returns from main serial process and then the branch output x0 1 is

optimized as a function of xS. However, in the loop structure, x01 cannot

be optimized at the converging stage j, since all the recursive returns

from stage j to k - I are affected by the variable x0 1. Hence, x0 1 needs

to be carried as a state variable for stages j through k - 1. Thus, the

storage requirement for the main serial system becomes

MSRS = NKK01 + 2 K01 (max U. - min i)
" i iS0Thus, the total storage requirement for the loop structure becomes

TRSL = IK + 2 K (max U - min Z1 101 01 i i

+ NKK 0 1 + 2 K0 1 (max U. - min )

71
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I

I
If we assume K1 = K, max Ui max i. and min 9 = min .i then the above

requirement becomes

TRSL = (M + N) KK01 + 2 K01 (max U. = m £.)0 011 1

4.5 Computational Experiments with the Loop System

In Table 4.4 we will iliustrate the computational requirement of the

feedforward loop system. We solved a set of problems with different numbers

of stages in the loop. For each problem :he following input data were used.

N 5

SK=1 = 15

K 1
01

max U. = 14

min ti = 0

As shown in the table, both the storage requirement and the CPU time can be

* represented as a linear function of the number of stages in the loop.

.,:Table 4.4: Computer Storage Requirements for the Feedforward Loop System

Number of Stages Storage Requirements CPU Time
in the Loop (Seconds)

2 1350 .602

3 1500 .694

4 1650 .748

5 1800 .875
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Chapter 5

ANALYSIS OF FEEDBACK LOOP SYSTEMS

5.1 The Basic Structure and Algorithm

- A feedback loop system is identical to a feedforward system except

that the relative positions of stages j and k are reversed. In the feedback

loop system as shown in Figure 5.1, k < j, where k is the diverging stage "

and j the converging stage.

The transition and return functions for the feedback loop are identical

to those of the feedforward loop with the numbering of the stages as shown

• in Figure 5.1.

The recursion equations for the feedback loops are a little different

because of the different positions of stages j and k. The optimization

procedures for the stages in the loop as well as those in the main serial

process except stages j and k are the same as in the feedforward loop

systems. Hence, we will not give the detailed optimization procedures for the

*feedback loop systems. Instead, we will summarize the -lgorithm in the flow

chart given in Figure 5.2.

In the algorithm described in the flow chart, the optimal loop return

f Ml (x Mil x 0 1 ) is combined with the main serial system at the diverging

stage k, and stages k + 1 through j - 1 are optimized to give f x)

The branch output x01 is then optimized at the converging stage j.

The analysis of the feedback loop system is not given since the com-

1plexity of this system is identical to that of the feedforward loop structure
presented in section 4.4.
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Figure 5.2: Flow Chart for the Feedback Loop System

Start

IiRead the input data

N = of stages in the main serial process
M =# of stages in the loop

=converging stage of the ioop
=diverging stage of the loop

K n(K ml discretization if' of input at stage n(ml)

P n(P ml= discretization # of decision at stage n(ml)

BKn(BKml) = lower bound of input at stage n(ml)
BPn(BPml) = lower bound of decision at stage n(ml)

Define the transition and return functions

t r t t 1 ,r
tPn'kl' l ml*

for n-1, 2, ..., N and m 1, 2, . ,M

Y es m1 No

If ml(,m, x1) max ml(,ml dm1 ) f ml ( xM.X01) max [r Mi(x md MI. + -,
mlml 01

SIt.. 01 tml (xml' din1) l( mdmi x0

ILi
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Save loop return f(

n=

Yes No
n-

f (x )=max r (x ,P n f n(x n max (r nCx n d n + f nl(t n(x n d n)M

d d

fi k+M1 (x kv X0 1 ) max [r k(x kv d k + f k-l(t k(X ks d k + f~l(x0 1 , tkl(xk, d k))l

jJ 76



f ff+M(x X~l 01 max r nx n, d)+ f n1+Ml (t (x9d)n x 01 )]
dI n

1No
J Yes

f.jm (x.) max [r j(x 01 xi, d.) + f .iI (t.i(x., d , x 0

x 011 C k --- ijj j 0

IL Yes

Determine the optimal system input XNsuch that

f N+l(x) max f N+I(x N

And find the optimal decisiond



[3

Compute the optimal input, decision, and return
at each stage from N-i1 down to l and from M1
down toll1 as follows:

x n t n 1 (xn+ 1 1 d) n =i N - ,.. ,n j-1

rn r (x d) n nN- . ln j
n. nn * n

xj= t (x x., d)
j- 01' j .

.r~ = rji(x0 1 Oyxj9 d )

XlIi t kl(x k d k)

I. t (xm,, ,d* m =M -, , 0
ml. -l'l mll M+I, 2

r. r 1  r 1i(x m., d MI), M= M, I.

1. Print Output

IMI
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5.2 An Example of a Feedback Loop System

To illustrate the optimization of a feedback loop system, we consider

an example with the structure shown in Figure 5.3 and the data given in Table 5.1.

The objective is to maximize the sum of the stage returns.

'I.
L X6

Figure 5.3: A Feedback Loop System

Table 5.1: The Return and Transition Functions of the System
in Figure 5.3

Stage Decision Return Transition Constraints

d r =x +d 2 x0+
11 11 11 11 01 11

21dr 2 x+d0 <5 X < 25 i 6
21 r21  x2 1 + d2 1  x1 1+ d2 1  x

2
31 d31 r31 X 31+ d31 x21+ d31 X6-!

1 dI  rl = Xl+ dI  (xl+ d12 4 0 -x 15

2 d2 r2 x2+ d2 x2+ d2 0< X01_< 6

3 d 3  r 3  x3+ d3  x 3+ d3  0< d 1< 3 i 2,..., 6

4 d r x4+ d x+d 0 di! 2

44 4 4 4 4

5 d r5  x++d5  X + x31  O dil- 2

6 d6 r6  x 6+ d 6  x6+ d 6

A... . 79



Table 5.2: Computer Output for Feedforward Loop Example
in Figure 5.3

DECISION TABLE AT STAGE 11

t. 0 0.. 1. 2 ******4*.****.*...**********.t *** A **********.****

I **** 0 1 ;. . 2 iS.b.,., ************** $ *******.****."**,*:***2***************:

J ~0 It DEISO TALAAcTAE2

***6**2. 0. 1. 2.V., A2. Ac 2.* 2. At 2. 2.** At I', c.
At 0 0 1. 2. 2. 4** 2p* At Ac2 .2

2*,r*2***********2* 0. 1. 2. **.*****2*****.************

A x "I * 2*2*, 31'*.** 2, 2**0. 1 ,
o, 2 22*2 O******* ** 0. 1. 2A ******* ** 1* 2

2,2*t*1** ****4**t***. ** ** 09 1 . 2, 2, 2, 2. 2,

A ' *2*******2******.**2***2***** 0. 2. 1. 2. ************

a* **, 2r22. 0. 1, 2. ****o

$*,**-***********.***.********************** 0. 12. 2. ***k

V. " At At At * ** 4*******, ** *,*O**** 0. 1. 2.

'DECISION TABLE AT STAGE 21

j Is 1. 2. 2. 2. 2. 2. 2. 2. 2. 2, 2. 2. 2. 2.

2. 0. 1. 2. 2. 2. 2. 2. 2. 2* 2. 2. 2. 2. 2.
2 2o 06 It 2. 2, 2. 2. 2. 2. 2. 2. 2o 2, 2.
2, 2, 2o 0. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.

2; 2, 2. 2, 2. 0. 2. 2, 2. 2. 2, 2 20 2.
2-. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2

-. 2. 2. 2. 2. 2. 2. 0. 2 2. 2. 2. 2. 2. 2.
2 2, 2. 2. 2. 2. 2. d, 1. 2. 2. 2. 2. 2. 2,

2. 2. 2. 2. 2. 2. 2. 2, 0. 0. 2. 2. *2. 2. 2.
2, 2.9 '29 2o~ 2o9 2. 2 , 26~ 2, 2, 06 1 2 2, 2

2 2. 2, 2. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2.
S 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2.

2. 2. 2. 2, 2. 2. 2, 2, 2, 2. 2. 2. 2. 0. 1.IL 2. '2 2. 2. 2. 2, 2. 2. 2, 2. 2. 2. 2. 2. 0.[ DECISION TABLE AT STAGE 31

(1 C. 2. 2. 2, 2# 2, 25 2, 2 . 2, 2, 2

2106 I 21 2. 2. 2. 2, 2. 2. 2. 2, 2. 2o[II 2, 2,' 0., .1 2, 2, 2, 2, 2, 2, 2, 2 2, 2
2. 2. 2. 2. 0. It 2, 2, 2. 2. 2. 2. 2, 2. 2.

2o 2 , 2. 0. 1. 2. 2. 2. 2. 2. 2. 2. 2.

2. .9 2, t 2 . 2. 0. 1. 2. 2. 2. 2. 2. 2. 2.,

IL 80
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Table 5.2 Continued

I

3. 3 3, 3, 3 3 3. 3 30 30

O 0, 0. 06 0. 0. 0, 0. 0. 0.

06 0, 0, 0. 04 0 0. 0. 0. o

0. 0. 0 0. 0. 0. 0, 0, 0. 0,
0. 00 0. 0, 0. 0, 0. 0 , 0O

I o , 0, 0. 0. 0. 0. 0, 06 O
0. O. O, 0. 01 0. O, 01 O, O,

0. O. 0. O. 0C ', 0. 0 O's. f ,

. 0 , ..'. ' , , . 0 0. 0. 0, 0.

0, 0, 0., 0. 0, 0, 06 0. 0. 0.
I0. 0. 0. 0, 04 0. 0 0. 01

L . . 0. 0. 0. O, 0, 0, 0, 0.

.3. . o 3. 3.

:OPTIMAL !.OOP OUTF'UT FOR EACH INPUT VALUE 5

'OF THE CONVERGING STAGE J'
0 11

1 110 ii

' 3 11!I1

6 i
7 12
8 12
9 12

ISTAGE INPUT DECIS RETURN'

6 4 3 7,
5 7 3 22.
4 11 3 14,
3 14 3 17,
2 1? 3 20,
1 20 2 22,

31 6 2 io,
21 8 2 12,
11 10 2 14,

TOTAL OPTIMAL RETURN IS 138.
EOI. 0 FILES. 1 .ECS. 1187 WORDS.
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In Table 5.3 we display a summary of the results of this example problem

while the decision table at each stage is shown in the computer output of Table

5.2.

Table 5.3: Optimal Input, Decision, and Return from Table 5.2

Stage Opt. Input Opt. Decision Opt. Return

31 6 2 10

21 8 2 12

11 10 2 14

6 4 3 7

5 7 (12)* 3 22

4 11 3 14

3 14 3 17

2 17 3 20

1 20 2 22

*()represents the optimal input from feedback loop to stage 5
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Chapter 6

SOLUTION OF SPECIALLY STRUCTURED NONSERIAL NETWORKS VIA

THE IMBEDDED STATE SPACE DYNAMIC PROGRAMMING

6.1 Introduction

In this chapter, we want to show how certain nonserial networks with

special structures can be solved using some recently developed dynamic programming

algorithms. The structure in question refers not so much to the network configura-

tion as it does to the nature of the return functions and the constraint spaces.

For example, when the return functions are discontinuous and, in particular, are

(transformable to) step functions, the imbedded state space dynamic programming

developed by Esogbue and Morin [20] is an especially potent procedure. This

method mitigates the usual curse of dimensionality problem inherent in most

dynamic programming solutions by reducing an M-dimensional search problem to a one

dimensional dynamic programming over a sequence of imbedded state spaces.

An excellent application of this procedure to the multidimensional knapsack

problem was discussed by Morin and Esogbue while Morin and Marsten [21] give the

details of an algorithm developed for the computational solution of large scale

dynamic programming problems.

6.2 Outline of the Imbedded State Space Approach (ISSA)

The key to this approach is the exploitation of the discontinuity preserving

properties of the maximal convolution to transform a search over the entire state

space to one restricted to a set of imbedded state spaces. This proposition is

propounded in [201. We outline the procedure in the sequel.

Consider the following multidimensional knapsack problem in which the

r () are discontinuous and furthermore step functions:
n

N
max E r (x ) (1)

J=l 

•

s.t. gij(x i). bi , i 1 1, 2, . M., H (2) 0

~j=1

Ss , j 1, 2 ... ,N (3)

" ' -"" . . lll . .. .. . , . . ...li l " .. ... ~ i..... .. ." " ... .. . .. . ... .. 'lll ..... .. . .. . iii -"



where V., S. = (0, 1, 2, ... , K.} and r. S. - R+ is nondecreasing with r.(0)

S0, V ij ; gij : Sj -R+ with gij (0) = 0 and b = {bi, b2 ... b } 7/, 0.

Let f(n, 8) be the maximum objective function value of an undominated

feasible solution to (1), (2), and (3) in which only the first n variables

(xi, x2, .... x ) can be positive and whose resource consumption cannot exceed
N N N

a 8 )- When E r (x.) < E r.(x.) and E g (x.) >
n j=l J j=l i - j=l gij

N
E gN (x x) with strict inequality holding in at least one of the (M+I) inequalities

j=l 1. 3

the feasible solution, x = (x1, x 2, ..., xn ) is said to be dominated by the feasible

solution, x = (xi x 2' ... x n1 2 n

For 0 < n < A, let R be the (domain) set of resource consumption vectors

gn (k) = [gl1 (k), g2 n(k), ..., g21 (k)] of all undominated feasible values of x = k.

Also, for 1 < n < N, let F be the set of resource consumption vectors 8 of all

undominated feasible solutions (x1, x2 v ... , x ) to the following subproblem:

n
max Z r.(x.) (4)

j=l

n
s.t. E g. (x.) < b. , i = 1, 2, ... , M (5)

j=l I -

x ES , j = , 2, ..., N (6)

Then, as demonstrated in [ I

F n C (Rn UF n-U (Rn F n-l)} , n = 1, 2, ... , N (7)

where (R n Fn)"denotes the set obtained by forming all sums of one element of

R with one element of F n_. The algorithm proceeds by recursively generating, for
nn-

all I < n < N, all feasible candidates for Fn from F and R via the following

functional equation:

f(n,8) ={r M + f(n-1, 8-gn (k) g(k) c R, (8)

[O-g n(k)] Fn _I , 6 < b}
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and the boundary condition

f(0,0) = o (9)

The implication of the foregoing is that instead of calculating f(n, 8),

V Q £ f, we only need to calculate it for Z e F while noting that f can ben n

constructed recursively from Rn and Fn-1 . Furthermore, we can usually eliminate

certain elements of either Rn U Fn- 1 or R n F as being inefficient or infeasible

thereby reducing the list length of Fn.

In this way, an H-dimensional search problem is reduced to a one dimensional

dynamic programming problem on the sequence of imbedded state spaces F0 , Fi, ...,

Fn C 0. An algorithm using the above procedure to constrhct the successive imbedded

state spaces and terminate with F is illustrated in Table 6.1.! n

6.3 An Application of ISSA to a Feedforward Loop System

Consider the following nonserial network where each stage has a return expressed

as a function of the input variable and each of the input variables has some con-

straints that need to be met. This is a simple feedforward loop system with con-

straints.

r!|

Figure 6.1: An Example of a Nonserial Network

(Feediorward Loop)

Suppose we have one constraint for the main serial process and the other for the

feedforward branch. That is, the first is for 3tages 1, 2, and 3 and the second

for stages 1, 4, 5, and 3. Then, our problem can be formulated as follows: (10) - (13)
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Table 6.1: Steps of the Imbedded State Space Algorithm for the Multidimensional
Knapsack Problem

This algorithm may be decomposed into the following steps:

Step 1 Set n=0, F0 = {80 0 and f(o,B 0) 0, where 8 0 0

Step 2 n 4--n+1 and k 4- 0

Step 3 If n > N, stop.

0 1p
Step 4 F n_ {1 $1, BPI 81 where P F- 1

Step 5 F n -Fn-

Step 6 k 4--k+1 If k > K, go to step 2.

Step 7 gn (k) = [g ln(k), g2n(k), ... , g~n(k)]

Step 8 p *-

Step 9 If g n(k) + S1' is infeasible go to step 13.

Step 10 If g nk) + 5P' is dominated by some point in F ns go to

Step 13.

Step 11 F n 4 F nU (g n(k) + OP}

f(n, (g n(k) + Op)) *- r n(k) + f(n-l, OP)

Step 12 Eliminate all the dominated points from F n i.e., F n F nminus

{all points dominated by g n (k) +OP

Step 13 p 4- p+l

Step 14 If p < p, go to step 9.

Otherwise, go to step 6.
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max rl(xl) + r2 (x2 ) + r3 (x3 ) + r4(x4) + rb(x5) (10)

s.t. g1 1 (x1 ) + g1 2(x2) + g1 3(x3) < b1  (11)

g21 (x1 ) + g2 3(x3) + g24 (x4) + g2 5(x5) , b2  
(12)

X. e S. (13)
3 j

where rj(x ) and gij(xj) represent the return and elements of the i-th constraint

at stage j respectively.

Let b = (6, 10) and the values of the r. and gij functions be tabulated as in

Table 6.2.

Table 6.2: Input Data for the Example

x. r1  g11  g2 1  r2  g1 2  g22  r 3 g1 3 g2 3  r4  g14  g24  r 5 g15 g25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 2 4 2 0 4 3 4 4 0 3 3 0 8

2 4 2 4 5 3 0 6 6 8 5 0 5 5 0 11

3 5 3 6 9 4 0 7 7 12 8 0 6 6 0 15

Notice the special s:ructure of this problem in which the RHS are constants as

opposed to the usual system (see example 4.3) in which they are expressed as

functions of the input state and decision variables.

We will now illustrate how the imbedded state space algorithm whose steps

were given in Table 6.1 may be used to solve the above nonserial network problem.

Consider the five stage problem as follows:

For Stage 1: 11 - ((0, 0), (1, 2), (2, 4), (3, 6)); F0  {(0, 0)); V @ F0

((0, 0), (1, 2), (2, 4), (3, 6)). Since no points are infeasible or dominated we

have F1 a ((0, 0), (1, 2), (2, 4), (3, 6)j. The following tables are then the

result of the computations at the first stage:
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FLIST PERMUTE TRACE

0 0 0 2 2 2 1 0 0 0

1 2 2 3 3 3 2 1 1 1

2 4 4 4 4 4 3 1 2 1

3 6 5 0 0 0 4 1 3 1

(M+l) (M+2)

The fourth column appended to the PERMUTE table points to the corresponding entry

in the TRACE table

For Stage 2: V2 = ((0, 0), (2, 0), (3, 0), (4, 0)}; V2 (F 1 = {(0, 0), (1, 2),

(2, 4), (3, 6), (2. 0), (3, 2), (4, 4), (5, 6), (3, 0), (4, 2), (5, 4), (6, 6),

(4, 0), (5, 2), (6, 4), (7, 6)}. The point (7,6) is infeasible since - (6, 10).

The point (2, 0) dominates the point (2, 4). In the same way, (3, 0) dominates

(3, 6)and (3, 2), (4, 0) dominates (4, 4) and (4, 2), (5, 2) dominates (5, 6) and

(5, 4). Finally, the point (6, 4) dominates (6, 6). So we have F2 = {(0, 0), (1, 2),

(2, 0), (3, 0), (4, 0), (5, 2), (6, 4)) with the following results:

FLIST PERMUTE TRACE

0 0 0 23 21 0 00

1 2 2 3 6 3 2 1 1 1

2 0 4 X X X 3 1 2 1

3.0 5 X X X 4 1 3 1

4 0  9 4 4 4 5 2 1 0

52 11 5 55 6 2 2 0

6 4 13 6 2 6 7 2 3 1

7 7 7 8 2 3 2

0 0 1 9 2 3131
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For Stage 3: V3 f(0, 0), (3, 4), (6, 8), (9, 12)), V3 ® F2 contains 28

points, of which 16 are infeasible and 5 are dominated. This leaves F3 = F2 f

((0, 0), (1, 2), (2, 0), (3, 0), (4, 0), (5, 2), (6, 4)) with the same tables

given in Stage 2.

For Stage 4: V4 - {(0, 0), (0, 3), (0, 5), (0, 6)1, V4 ( F3 contains 28

points all of which are feasible. Two points are dominated. Finally, we have

F4 = [(0, 0), (1, 2), (2, 05, (3, 0), (4, 0), (5, 2), (0, 3), (1, 5), (2, 3),

(3, 3), (4, 3), (5, 3), (0, 3), (1, 7), (2, 5), (3, 5), (4, 5), (5, 7), (0, 6),

(1, 8), (2, 6), (3, 6), (4, 6), (5, 8), (6, 10)}. At the end of this stage, we

have the following tables for the FLIST, PEMUTE, and TRACE computations (see next

page).

We have used X's in the tables to indicate spaces which, although not currently

filled, are useable. Although these appear only in the PERMUTE tables both for

stages 2 and 4 in our computation, they should be used in either the FLIST or

PEMUTE tables at any stage where their use in dictated.

Notice that the tables begin to look alike as the computational process proceeds

to the final stage computation. This is as it should be. Let us now complete the

computations for the stage 5, the final stage.

91



FLIST PERMUTE TRACE

1 0 0 0 7 3 2 1 0 0 0

2 1 2 2 8 6 3 2 1 1 1

3 2 0 4 X X X 3 1 2 1

4 3 0 5 X X x 4 1 3 1

5 4 0 9 9 4 7 5 2 1 0

6 5 2 11 10 5 13 6 2 2 0

7 0 3 4 11 2 10 7 2 3 1

8 1 5 6 12 7 21 8 2 3 2

9 2 3 8 X X X 9 2 3 3

10 3 3 9 13 C, 4 10 4 1 1

11 4 3 13 14 12 14 11 4 1 2

12 5 5 15 15 10 19 12 4 1 5

13 0 5 5 16 11 15 13 4 1 6

14 1 7 7 17 8 22 14 4 i 7

15 2 5 9 18 13 18 15 4 1 8

16 3 5 10 19 15 8 16 4 2 1

17 4 5 14 20 18 9 17 4 2 2

18 5 7 16 21 16 16 18 4 2 5

19 0 6 8 22 17 20 19 4 2 6

20 1 8 10 23 19 12 20 4 2 7

21 2 6 12 24 20 23 21 4 2 8

22 3 6 13 2 21 5 22 4 3 1

23 4 6 17 3 24 6 23 4 3 2

24 5 8 19 .4 22 11 24 4 3 5

25 6 10 21 5 23 17 25 4 3 6

6 14 24 26 4 3 7

25 25 25 27 4 3 8

0 0 0 28 4 3 9

.. ..... . 9 2



At Stage 5: V5 - {(0, 0), (0, 8), (0, 11), (0, 14)). V5 ! F4 contains 100

points of which 69 are infeasible and 6 are dominated. As a result, we have

F5 = F4 and the resulting tables are the same as in stage 4.

Now we need to find the optimal solution at each stage, The zero in the

third column of the PERMUTE table shows that the maximum return is achieved at

b - (6, 10) with objective function value 21. To reconstruct the optimal x , we

go to the TRACE entry in row 28. Here, we find that x4 = 3. Proceeding to row 9

of the same table, we find x= 3. Finally, in row 3 we have x1 = 2. All other
2

variables are zero and we have x (2, 3, 0, 2, 0) as the optimal solution and

optimal value of 21.

6.4 Analysis of the Imbedded State Space Technique

We will now analyze the storage requirement of the successive imbedded

state space technique in solving the following nonlinear knapsack problems.

N
max r (x)

i j=l

S.t. E ij (xj) b I  , i = 1, ... , M

xj E S j N

where S = {0, 1, 2, ... , k } for all J.
j j

To simplify our analysis we will assume that the maximum permissible value

for each variable is taken to be the same, i.e. k " K for all J. Then the

storage requirement of the technique can be analyzed by considering the following

three aspects:

6.4.1) Storage Requirements for the Input Data.

The algorithm needs r (x ), gIJ(xj) and bi as the input data. Since we

have H constraints, N variables and K discretization levels of each variable,

the storage requirement for r J(xj) and g j(X ) becomes (M + 1) KN. To store

the available resources the algorithm requires D elements in an array. Hence the

storage requirement for the input data becomes (H + 1) KN + M.
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6.4.2) Storage Requirement for the Three Main Tables.

The three main tables in the imbedded state space algorithm are the

FLIST, PERMUTE, and TRACE tables. FLIST table shows the resource used and

return for each undominated feasible solution. PERMUTE table gives the best,

second best, ... solutions at each stage in conjunction with the FLIST table.

Finally, the TRACE table is used in generating optimal solution at the final

stage N. It traces from the value of xN to xi recursively.

Since the above three tables store only the feasible and undominated

(for FLIST and PERMUTE tables) solutions at each stage, the storage requirement

actually used is quite different for different problems. Hence, we will analyze

the worst case performance of the algorithm. That is, at each stage every point

generated is feasible and undominated by the points at the previous stage.

Note that we have K + 1 discretization levels for each variable xi, j = 1, 2,

.. , N and M constraints and one return. At each stage, we have K + I times the

number of points in the previous stage. By the above assumption, no points are

infeasible and dominated. Hence, at the final stage N, each table has (K + 1)
N

elements and the storage requirements for the main three tables are 2(K+I) ( +)

N+ (K+l) (M+2).

6.4.3) Storage Requirement for the Feasibility and Dominance Test.

As shown in the feedforward loop example, the algorithm discards the infeasible

or dominated points at each stage. Also, the remaining feasible and undominated

solutions need to be sorted for the PERMUTE tables. The itemized storage require-

t ments can be obtained from the computer algorithm. Here, the total storage require-

ment for the feasibility and dominance tests is given by

i 6N + 4 (M + 1) + (K + N

g Now, the above three storage requirmennts in the imbedded state space technique

can be summarized as follows:
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a) Storage requirement for the input data (M+I)KN+M

b) Storage requirement for the three main tables =-2(K+l) (M+l) + (K+l)N (M+2)

c) Storage requirement for the feasibility and

dominance test = 6.' + 4(M+1) + (K+l)y

The total is a) + b) + c) or (K+I)N (311+5) + KN(M+I) + 6N + 5M + 4

6.5 Discussion on the General Nonserial D.P. Network Algorithm and the
Imbedded State Space Technique

Let us compare the two approaches using the following feedforward loop

system with N stages as our leitmotif.

N N ... Nzi Z+l

xoj

.....

Figure 6.2: A General Nonserial Feedforward Loop Network

The general nonserial D.P. network algorithm solves the following problen:

(P1) I
max Z rn(xn, dn)~n=1

s.t. t (x , d) = d nj,L +i

t (x ,d x

xnCXn 9dn cDn

On the other hand, the imbedded state space technique was used to solve the following

nonlinear knapsack problems:
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(P2) max N r (x

j=l

N
s.t. Z gi.(x.) < b , i = 1, 2, ... M,J=l -

.j j

By comparing the two problems Pl and P2, it is clear that if we delete the decision

variables d , n = 1, 2, ... , N, then we have the same objective function. However,n

notice that the two problems are quite different in the structure of the constraints

sets. In P1, the constraints are given as the transition function at each stage

in the network, while they are given in inequality forms in P2. Also notice that

the RHS of each constraint of P1 is not a constant as in P2, but still a variable.

Now suppose that the constraint in P2 is changed as N separate ones at each stage,

i.e.

gij(xj) < bi, for i-1, ..., M, j=l, ..., N.

Then, gj - (glj' g2j' " mj) can be considered as a vector transition function at

stage J, j = 1, ..., N. However, at the junction stage j in the Figure 6.2, we

have two separate transition functions gj(x.) and g(x oj) as opposed to t (xj, Xoj

in P1 when the decision variables are deleted. Hence, if the transition function at

the junction stage j is separable, i.e.,

t j (xj xoj) - gj(xj) + gj(Xoj)

then the use of the imbedded state space technique may give a clue to the solution

of general nonserial network problems. However, the inequalities in the con-

straints and the difference in the RHS in the two problems will seem to obstruct

the direct use of the technique for the general nonserial network structures. Never-

theless, the ISSI has considerable potential for use in solving large scale state

vector dimensional problems in nonserial networks. Its utility will be enhanced by

the us of fath- ng approaches such as those suggested in the hybrid algorithms

describe. n [2i].
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